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ABSTRACT
An accurate numerical calculation method is presented for the

wave-induced steady forces and moments on each of the columns
supporting a very large floating structure. The method is based
on the direct integration of the pressure over the wetted sur-
face of each column. First-order quantities needed in computing
the pressure are determined by applying a higher-order bound-
ary element method combined with the wave-interaction theory
taking account of hydrodynamic interactions exactly within the
linearized potential theory. The effects of motions of a struc-
ture are incorporated consistently up to second-order in the wave
amplitude. Experiments in head waves are also conducted using
64 truncated vertical cylinders arranged in a periodic array of
4 rows and 16 columns. Steady wave forces are measured at 6
different positions among 64 cylinders, and they are all in good
agreement with computed results. Some characteristics in the
variation tendency of the local steady forces are summarized.

KEY WORDS: drift force and moment, hydrodynamic interac-
tions, pressure-integration method, trapped mode

INTRODUCTION

A column-supported structure has been considered as a possi-
ble type of very large floating structures. This structure consists
of a large number of floating columns which support a thin up-
per deck. By comparison with an alternative pontoon type which
has been studied recently by many researchers (e.g. see Kashi-
wagi (1999) for a review), it is said that the column-supported
type is advantageous in small motions in waves, because incident
waves will transmit through a gap between columns.

However, this recognition may not be true. For instance, ac-
cording to Maniar & Newman (1997), near-trapped modes among
many cylinders occur at some critical frequencies and exert large
wave forces on each cylinder of the array. Their study is based on
a simple geometry, where a large number of bottom-mounted cir-
cular cylinders are periodically placed along a single straight line.
Therefore no information is given on the near trapped-wave phe-

nomena in a realistic array of columns and on the second-order
wave drift force.

Recently, Kashiwagi (2000) presented a calculation method
for the drift forces in the horizontal plane and the drift yaw mo-
ment on the basis of the momentum conservation principle. This
method (referred to as the far-field method hereafter) is effective,
because all necessary integrations over a control surface located
far from the structure are analytically performed using Graf’s ad-
dition theorem and Wronskian formulae for Bessel functions and
the orthogonality of trigonometric functions to integrals in the
circumferential direction. However, this method gives only the
total force and moment acting on the structure.

Meanwhile, the steady drift forces can also be computed by in-
tegrating the pressure over the wetted surface of a structure and
taking time average over a period. (Hereafter this method will
be referred to as the pressure-integration method or the near-
field method.) This pressure-integration method enables us to
evaluate the local forces on each column, which is very useful
in the analysis of structural strength and in the design of moor-
ing systems. The present paper is concerned with this pressure-
integration method.

The wave drift force is a second-order steady force with respect
to the wave amplitude, which can be obtained from quadratic
products of first-order quantities. In this paper, the boundary-
value problems for the first-order velocity potentials are solved
using Kagemoto & Yue’s wave-interaction theory (1986) com-
bined with a higher-order boundary element method (HOBEM).
Thus, hydrodynamic interactions among many columns are taken
into account exactly in the framework of the potential theory.
The resulting hydrodynamic forces and wave-induced motions of
a structure are computed, with which the effects of body motions
on the local steady forces are properly evaluated. In the pressure-
integration method, spatial derivatives of the velocity potential
and the wave elevation at the waterline must be computed; which
is successfully performed with the 9-point isoparametric represen-
tation for the surface geometry and velocity potential. Validity
and numerical accuracy of the present method are confirmed by
comparing the sum of local steady forces with the drift force com-
puted by the far-field method.



Experiments are also carried out using 64 identical circular
cylinders with horizontal base, arranged in a periodic array with
4 rows and 16 columns. Results of the steady wave forces mea-
sured at 6 selected positions are compared with corresponding
numerical results. Good agreement is found between computed
and measured results. Some characteristics of the local steady
forces are noted, which are markedly different depending on the
position of the cylinder in the array.

FORMULATION AND SECOND-ORDER FORCES

We consider the interactions of plane regular incident waves
with a large floating structure. As shown in Fig. 1, the structure
considered here comprises a thin upper deck and a large num-
ber of buoyancy columns which are identical and equally spaced.
The geometry of an elementary column is a truncated circular
cylinder with radius a and draft d. The centerlines of adjacent
cylinders are separated by a distance 2s in both x- and y-axes
of a Cartesian coordinate system. Here o -xyz is the body-fixed
coordinate system with the origin placed at the center of gravity
(G). In steady-state equilibrium, the position of G is supposed
to be at (0, 0, zG) in a space-fixed coordinate system O -XY Z,
where Z = 0 is taken as the undisturbed free surface and the
Z-axis is positive vertically downward.
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Fig. 1 Coordinate system and notations

The structure is allowed to move with unsteady motions of
six degrees of freedom in response to the wave excitation. The
vectors of the translational and rotational motions are denoted by
�(t) and �(t), respectively, and the magnitudes of these motions
are assumed to be small. Then the vector of local displacement
at a point on the body surface can be expressed as

�(t) = �(t) +�(t) × �, (1)

where � = (x, y, z) represents the position vector in the body-
fixed reference frame.

Under the assumption of incompressible and inviscid flow with
irrotational motion, we introduce the velocity potential, Φ, sat-
isfying the Laplace equation. Assuming weak nonlinearities, the
velocity potential and the motion vectors can be written as a
perturbation series with respect to a small parameter ε, which is
usually taken as the wave slope:

Φ = ε Φ(1) + ε2Φ(2) +O(ε3),

� = ε �(1) + ε2�(2) +O(ε3),

� = ε�(1) + ε2�(2) +O(ε3).


 (2)

Given the above quantities, the hydrodynamic pressure will
be computed. Then the wave force on a body can be obtained
by integrating the pressure multiplied by unit normal vector over
the instantaneous wetted body surface, say S(t).

Using (2) and Taylor’s expansion for both the pressure and
unit normal vector on S(t) with respect to the mean body sur-
face, SB , the wave forces on a body can be expressed in a per-
turbation series. Details of the derivation can be found in, for
example, Ogilvie (1983) and Kim & Yue (1990). The result can
be summarized as follows:

� = �
(0) + ε� (1) + ε2� (2) +O(ε3), (3)

where
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(0) =−ρgV �, (4)
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Here ζ
(1)
R in (7) denotes the first-order relative wave elevation

given by
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which must be evaluated along the mean waterline CB; ρ is the
fluid density; g is the gravitational acceleration; V is the displace-
ment volume; � is the unit normal vector directing into the fluid
from the mean body surface SB ; �(1) = �(1) +�(1) × � and thus
Ξ

(1)
3 = ξ

(1)
3 +α

(1)
1 y−α(1)

2 x ; � is the unit vector in the z-direction
of the space-fixed coordinate axes.

The present paper is concerned with time-averaged steady
forces, which can be computed only from �

(2)
q containing only

quadratic products of first-order quantities.
The corresponding expressions for the moment about the cen-

ter of gravity can be obtained in a similar form. The second-order
term to be computed from quadratic products of first-order quan-
tities, which is denoted as �

(2)
q , may be computed by
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The first-order motions, �(1) and �(1), follow from the equa-
tions of motions based on Newton’s second law, for which the
first-order hydrodynamic force and moment must be computed.

SOLUTION OF FIRST-ORDER PROBLEM

The first-order quantities are assumed to be time-harmonic
with circular frequency of the incident wave, ω, and are expressed



as
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[
gA

iω
φ(x, y, z) eiωt

]
, (10)
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where A is the amplitude of the incident wave, and a is the ra-
dius of an elementary column which is used as the representative
length scale for nondimensionalization. Note that φ(x, y, z) and
Xj (j = 1 ∼ 6) are expressed as nondimensional quantities.

When solving the boundary-value problem with the free sur-
face, it is convenient to use a space-fixed coordinate system. In
the mean position of a body oscillating with a constant circular
frequency, the body-fixed coordinate system coincides with one
fixed in space except for the vertical shift of z = zG. Therefore,
in the analysis to follow, (x, y, z) will be used as the space-fixed
coordinates.

The spatial part of the velocity potential, φ(x, y, z), can be
decomposed in the form

φ = φI + φS −K

6∑
k=1

Xk

{
φk + ϕk

}
, (12)

where K = ω2a/g is the nondimensional wavenumber.
φI and φS are the incident-wave and scattering potentials, re-

spectively, and the sum, φI + φS ≡ φD, is referred to as the
diffraction potential. For plane waves propagating in the direc-
tion with angle β relative to the positive x-axis, φI is given by

φI =
cosh k0(z − h)

cosh k0h
e−ik0(x cos β+y sin β), (13)

where k0 is the solution of k0 tanh k0h = K, and h denotes the
constant water depth, nondimensionalized in terms of a.

In the radiation problem, φk in (12) denotes the velocity po-
tential of a single body oscillating in the k-th mode (with no
interactions among cylinders) and ϕk represents the remaining
part of the potential due to hydrodynamic interactions with ra-
diated and scattered waves by the other cylinders.

Therefore the boundary conditions to be satisfied on the mean
body surface, SB , are given as

∂φD

∂n
= 0,

∂φk

∂n
= nk,

∂ϕk

∂n
= 0, (14)

where � = (n1, n2, n3) and � × � = (n4, n5, n6).
Solutions satisfying (14) and other free-surface and radiation

conditions may be obtained by using Kagemoto & Yue’s inter-
action theory (1986). To obtain expressions valid near the j-th
cylinder (see Fig. 1) using the interaction theory, we will use
a local cylindrical coordinate system (rj , θj , z), with the origin
placed at the center of the j-th cylinder, (xj , yj , 0). Namely,
x = xj + rj cos θj and y = yj + rj sin θj will be substituted.

The expressions of the velocity potentials by the interaction
theory, appropriate for the present analyses, may be found in
Kashiwagi (1998), and the results are summarized as follows:
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where {
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D

}
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}
+

[
Bj

]{
ψj

S

}
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Here
{
ψj

I

}
and

{
ψj

S

}
in (18) are the vectors of the “gen-

eralized” incident-wave and scattering potentials, respectively,
defined as

{
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I

}
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where

Z0(z) =
cosh k0(z − h)

cosh k0h
, Zn(z) =

cos kn(z − h)

cos knh
, (21)

and kn (n = 1, 2, · · · ) are solutions of kn tan knh = −K, giv-
ing the wavenumbers of evanescent wave modes. The number of
terms in the θ-direction, p and m in (19) and (20), must be taken
as 0, ±1, ±2, · · · .

The coefficient vector of the incident wave,
{
aj

}
, can be ex-

plicitly given by expressing (13) in terms of a local cylindrical
coordinate system. Meanwhile,

[
Tij

]
is the coordinate transfor-

mation matrix, relating
{
ψi

I

}
with

{
ψj

S

}
, which can be given

by Graf’s addition theorem for Bessel functions. NB denotes the
number of total cylinders.

The vector
{
Rj

k

}
in (16) can be numerically obtained by solv-

ing the radiation problem for a single body. Likewise, the matrix[
Bj

]
in (18) can be obtained by solving the diffraction prob-

lem for a single body, with each component of (19) regarded as
an incident-wave velocity potential. For these numerical compu-
tations, a higher-order boundary element method using 9-point
isoparametric elements is adopted in the present paper.

Other unknown vectors representing wave interactions,
{
Ai

S

}
in (15) and

{
Ai

k

}
in (17), are determined by Kagemoto & Yue’s

interaction theory.
Once the velocity potentials are determined, it is straightfor-

ward to compute the first-order forces acting in the k-th direction;
those are expressed in a nondimensional form as follows:
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Here f j
k� in the radiation force and

{
ej

k

}
in the diffraction

and interaction forces are fundamental hydrodynamic forces of a
single body, which can be computed by
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 (26)
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Fig. 2 Experimental model: arrangement of 64 truncated circular cylinders fixed in head waves

with nj
k being the k-th component of unit normal vector on the

j-th cylinder.
Cj

k� appearing in (23) denotes the restoring force coefficients;
nonzero values among these coefficients for a vertical circular
cylinder are summarized as follows:
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(27)

Having determined the hydrodynamic and hydrostatic forces,
the complex amplitude Xk defined in (11) will be determined by
solving the motion equations of a structure with NB buoyancy
cylinders.

The steady wave forces and moments can be obtained by tak-
ing time average over one period of �

(2)
q given as (7) and �

(2)
q

given as (9), respectively.
As shown in (10), (11) and (22), the time-dependent part of all

first-order quantities are expressed as eiωt. Therefore the time av-
erage can be easily computed by means of the following formula:
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2
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, (28)

where the overbar means the time average to be taken and the
asterisk denotes the complex conjugate.

As a special case of (7) and (9), when the body motions are
completely restrained, calculation formulae for the time-averaged
steady forces and moments become much simpler, including only
the diffraction components. For instance, the nondimensional
expression for the steady force, �̄ , can be given by
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OUTLINE OF EXPERIMENTS

With the calculation method described in the preceding sec-
tion, the effects of body motions on the steady forces can be taken
into account. However, to check validity and performance of the
calculation method for the diffraction problem first, motions were
completely fixed in experiments.

As shown in Fig. 2, experiments were conducted in head waves
(β = 0◦), using 64 equally-spaced truncated circular cylinders.
The diameter (D = 2a) of an elementary cylinder is 114 mm. The
separation distance between centerlines of adjacent cylinders, 2s,
was set equal to 2D in both x- and y-axes; that is, s = D. To
see effects of the draft of cylinders on the wave interactions, two
cases of d = D and d = 2D were tested, but only the results of
d = 2D will be presented in this paper, because there were no
essential differences between the two cases.

The wave forces were measured by dynamometers at 6 different
positions. As shown in Fig. 2, 16 columns are numbered from the
upwave side. By symmetry, the lines of y = ±2a are called the
inside and the lines of y = ±6a are called the outside. Then the
positions of measured cylinders are distinguished with the column
number and the inside or outside line.

The steepness of regular waves (the ratio of wave height with
wave length, H/λ) was set approximately equal to 1/50. The
circular frequency ω of incident waves was varied in the range of
Ks = ω2s/g = 0.2 ∼ 1.6. Measured data were analyzed using
an ordinary Fourier analysis, from which the steady force in the
x-axis was obtained.

RESULTS AND DISCUSSION

Outline of Numerical Computations
As the first step of numerical computations, the boundary-

value problems for a single cylinder were solved by the boundary
element method using 9-point quadratic representations for both
the surface geometry and velocity potential. The number of pan-
els over one quarter of the submerged surface was 40, and in this
case the number of total unknowns (velocity potentials at nodes)
was 177.

In computing the wave interactions, the number of Fourier
series in the θ-direction (M) and of evanescent wave mode (N)
must be finite. In the present paper, M = 5 andN = 3 are chosen
after convergence check for Ks = 1.0, β = 0◦, and h = 3d, for
which five decimals absolute accuracy has been achieved.

The number of total unknowns for M = 5, N = 3, and NB =
64 is (2M + 1) × (N + 1) × NB = 2816. The computation time
in this case will be very long, if computations must be carried
out at many frequencies for higher resolution. Therefore, double
symmetries with respect to x- and y-axes are exploited, which
can reduce the number of unknowns to 1/4 (i.e. 2816/4=704).

The spatial derivatives of the velocity potential over the sub-
merged surface, SB , which are needed in computing the second-
order steady forces by the present method, are evaluated using 2-



Table 1 Steady forces in surge, sway, and yaw on a structure with 64 circular cylinders arranged
periodically in the array of 4 rows and 16 columns, computed by the far-field method
and the pressure integration method. (d = 2D, s = D, h = 7.5 d, β = 30◦)

By Far-Field Method (Momentum-Conservation Principle)

Diffraction Problem Including Motion Effects
Ks FX FY MZ FX FY MZ

0.50 0.05413 0.00876 0.00412 0.14638 0.01407 -0.10189
1.00 0.08821 0.04253 0.02977 0.08946 0.04258 0.03098
1.50 1.6217 0.08032 -0.00668 1.6218 0.08030 -0.00606
1.75 3.9364 0.27782 0.40703 3.9369 0.27766 0.40795
2.00 3.2052 0.70410 -0.26574 3.2048 0.70387 -0.26517
2.50 0.98615 0.50644 -0.37112 0.98633 0.50677 -0.37146

By Near-Field Method (Direct Pressure Integration)

Diffraction Problem Including Motion Effects
Ks FX FY MZ FX FY MZ

0.50 0.05576 0.00874 0.00343 0.17035 0.01336 -0.10203
1.00 0.08868 0.04209 0.02975 0.08997 0.04213 0.03099
1.50 1.6222 0.08027 -0.00664 1.6223 0.08025 -0.00602
1.75 3.9368 0.27791 0.40708 3.9373 0.27775 0.40799
2.00 3.2056 0.70419 -0.26571 3.2052 0.70396 -0.26513
2.50 0.98646 0.50627 -0.37130 0.98664 0.50661 -0.37164

D quadratic isoparametric representations for the velocity poten-
tial and coordinates (x, y, z). The line integral along the water-
line, CB, which is also needed in the pressure-integration method,
is evaluated using 1-D quadratic isoparametric representations for
the velocity potential at z = 0 and coordinates (x, y).

Total Drift Force on 64 Cylinders
Based on the momentum-conservation principle, Kashiwagi

(2000) developed a calculation method (the so-called far-field
method) for computing the drift forces in the horizontal plane
and the drift yaw moment. Although this far-field method gives
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Fig. 3 Total wave drift force on 64 circular cylinders,
computed by the far-field method

only the total force on the structure, accurate results can be ex-
pected, because all necessary integrations on a control surface
located far from the structure are analytically performed. There-
fore, to check numerical accuracy of the present method, the sum-
mation of the local steady forces on 64 cylinders was compared
with independent results by the far-field method.

Figure 3 is taken from Kashiwagi (2000), showing the results
computed by the far-field method for the surge drift force in head
waves. Corresponding results computed by the present method
are shown in Fig. 4, which is in virtually perfect agreement with
Fig. 3 except for very small difference near Ks = 1.24.
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Fig. 4 Total wave drift force on 64 circular cylinders,
computed by the pressure-integration method



For the case of freely oscillating in response to the wave exci-
tation, comparison of the results is shown in Table 1 at some
wavenumbers. To show the results of the steady sway force
(FY ) and yaw moment (MZ), computations were performed for
β = 30◦, and other geometrical parameters are the same as Figs. 3
and 4. The center of gravity was assumed to be on the water plane
and the radii of gyration in roll, pitch, and yaw modes were set
to 0.25B, 0.25L, and 0.25L, respectively, with B and L being the
breadth and length, respectively, of the structure composed of 64
cylinders.

We can see from Table 1 that very good agreement exists be-
tween the far-field method and the present method based on the
direct pressure integration. For higher frequencies, the steady
forces and moment become large and the yaw moment changes
the sign abruptly around Ks = 1.7, but major contributions stem
from the diffraction component. This is because the structure
considered here is large compared to the wavelength of the inci-
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Fig. 5 Steady surge force on the cylinder at Column No. 1
along the inside line
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Fig. 7 Steady surge force on the cylinder at Column No. 9
along the inside line

dent wave and thus the wave-induced motions are relatively small
for higher frequencies. Notwithstanding small values of motions,
we can see that the effects of body motions are properly computed
by the present method.

Comparison with Experiments
Having confirmed the validity and accuracy of the present

method, let us investigate the local steady forces on elementary
cylinders by comparing with experimental measurements.

Figure 5 shows the steady surge force on the cylinder located
at Column No. 1 along the inside line (see Fig. 2). Likewise,
Fig. 6 shows the results on the cylinder at Column No. 1 along
the outside line. In the frequency range less than Ks � 1.24, we
can see regular fluctuation with increasing amplitude, which may
be due to the effects of wave reflection from downwave cylinders.
On the other hand, at frequencies higher than Ks � 1.24, the
variation pattern changes and the steady force becomes positive.
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Fig. 6 Steady surge force on the cylinder at Column No. 1
along the outside line
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Fig. 8 Steady surge force on the cylinder at Column No. 9
along the outside line
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Fig. 9 Steady surge force on the cylinder at Column No. 15
along the inside line

This implies that large part of the incident wave is reflected by
the cylinders placed near the upwave end, and that the total drift
force (shown in Figs. 3 and 4) is determined almost by the local
steady forces acting on upwave cylinders. (The latter conjecture
will be endorsed by observing the results on downwave cylinders,
shown in Figs. 7–10.) According to Maniar & Newman (1997),
Ks = 1.24 corresponds approximately to a near trapped-mode
frequency of Neumann type, around which linear wave forces be-
come large and change drastically.

Comparison between Fig. 5 and Fig. 6 reveals that the ampli-
tude of fluctuation at lower frequencies is larger at the inside than
that at the outside. Although the fluctuation amplitude just be-
low the near trapped-mode frequency is not so large in measured
results, the overall agreement between computed and measured
results is satisfactory.

Figures 7 and 8 are the results of the steady surge force on the
cylinders at Column No. 9. It is clearly shown that the steady
force at the inside (Fig. 7) is much larger in amplitude than that
at the outside (Fig. 8). This implies that the wave interactions
are intensified inside the array of a large number of cylinders. By
comparison with Figs. 5 and 6, we can see that variation of the
steady force with respect to Ks becomes mild for lower frequen-
cies. On the other hand, at frequencies higher than Ks � 1.24,
the steady forces at Column No. 9 are almost zero. Including
these characteristics, computed results are in good agreement
with measured results.

Figures 9 and 10 show the steady surge force on cylinders
at Column No. 15 (the second column from the most downwave
side). We can see again that the steady force at the inside is larger
than that at the outside and the variation with respect to Ks
becomes further mild. The present computations predict a spike-
like rapid change just below the near trapped-mode frequency,
but that is not clear in measured results; which may be attributed
to a decay due to viscous effects.

CONCLUDING REMARKS

A calculation method based on the direct pressure integration
was presented for computing the steady force and moment on a
column-supported large floating structure. This method enables
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Fig. 10 Steady surge force on the cylinder at Column No. 15
along the outside line

us to compute the local steady forces on each of a large number
of columns. Although the steady forces are dominated by the
diffraction component for practical frequencies because of large
scale of the structure, the effects of wave-induced motions of the
structure are also taken into account. The pressure on the wetted
surface of each column was computed by the wave-interaction
theory which is exact in the framework of the linear potential
theory.

Validity and numerical accuracy of the present method were
confirmed by comparing the sum of local steady forces on 64
vertical cylinders with the wave drift force computed by the far-
field method based on the momentum-conservation principle.

Concerning the characteristics of the local steady forces on
each cylinder, computed results were compared with measured
ones using 64 vertical cylinders arranged in 4 rows and 16
columns, through which we observed the followings:

1) The overall agreement is very good, considering that the
steady forces are second-order small quantities in the wave
amplitude.

2) The steady force on each column can be negative, though
the total force summing up the local forces of all columns
is definitely positive.

3) At the upwave side, the variation of the steady force is
rapid in the frequency range lower than the near trapped-
mode frequency, but this variation becomes mild as the
position of a cylinder goes downstream.

4) For higher frequencies than the near trapped-mode fre-
quency, the local steady forces on upwave cylinders be-
come positive and large, dominating the total drift force
on the whole structure.

5) The steady force on a cylinder along the inside line in the
array is larger than that on a cylinder along the outside line
in the variation amplitude with respect to the frequency.
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